본문 바로가기
생명공학

life - What is Life

by 이덕휴-dhleepaul 2021. 5. 1.

생명

First published Fri Aug 15, 2003; substantive revision Mon Nov

7, 20112003년 8월 15일 금요일 첫 출간; 2011년 11월 7일 실질적인 개정

Life is often defined in basic biology textbooks in terms of a list of distinctive properties that distinguish living systems from non-living.

생명은 종종 생물학 교과서에 생명체와 무생물을 구별하는 독특한 성질의 목록으로 정의된다.

Although there is some overlap, these lists are often different, depending upon the interests of the authors.

다소 중복되는 부분도 있지만, 이 목록들은 저자의 이해관계에 따라 다른 경우가 많다.

Each attempt at a definition are inextricably linked to a theory from which it derives its meaning (Benner 2010).

정의에 대한 각 시도는 그 의미를 도출하는 이론과 불가분의 관계에 있다(Benner 2010).

Some biologists and philosophers even reject the whole idea of there being a need for a definition, since life for them is an irreducible fact about the natural world.

일부 생물학자들과 철학자들은 심지어 정의의 필요성이 있다는 전체적인 생각을 거부하기도 한다. 왜냐하면 그들을 위한 삶은 자연계에 대한 설명할 수 없는 사실이기 때문이다.

Others see life simply as that which biologists study.

다른 사람들은 삶을 생물학자들이 연구하는 것으로 단순하게 본다.

There have been three main philosophical approaches to the problem of defining life that remain relevant today:

오늘날에도 여전히 관련이 있는 삶을 정의하는 문제에 대한 세 가지 주요한 철학적 접근법이 있었다.

Aristotle's view of life as animation, a fundamental, irreducible property of nature; Descartes's view of life as mechanism; and Kant's view of life as organization, to which we need to add Darwin's concept of variation and evolution through natural selection (Gayon 2010; Morange 2008).

아리스토텔레스의 인생관을 애니메이션으로, 자연의 근본적이고 돌이킬 수 없는 성질로서, 데카르트의 인생관을 메커니즘으로, 그리고 자연선택을 통해 다윈의 변이·진화의 개념을 추가해야 하는 조직으로서의 칸트의 인생관(Gayon 2010; Morange 2008).

In addition we may add the idea of defining life as an emergent property of particular kinds of complex systems (Weber 2010).

또한 우리는 생명을 특정한 종류의 복잡한 시스템의 새로운 속성으로 정의하는 아이디어를 추가할 수 있다(Weber 2010).

The focus of this entry is primarily the attempts to define life during the twentieth century with the rise of biochemistry and molecular biology.

이 항목의 초점은 주로 생화학 및 분자생물학의 발달과 함께 20세기 동안의 삶을 정의하려는 시도들이다.

But this was the century that saw the rise of artificial intelligence, artificial life, and complex systems theory and so the concern includes these perspectives.

그러나 이 세기는 인공지능, 인공생명체, 복잡한 시스템 이론이 부상한 세기로서 이러한 관점을 포함하고 있다.

Animate beings share a range of properties and phenomena that are not seen together in inanimate matter, although examples of matter exhibiting one or the other of these can be found.

비록 이것들 중 하나 또는 다른 하나를 보여주는 물질의 예를 발견할 수 있지만, 애니메이트 존재들은 무생물에서 함께 보이지 않는 다양한 특성들과 현상들을 공유한다.

Living entities metabolize, grow, die, reproduce, respond, move, have complex organized functional structures, heritable variability, and have lineages which can evolve over generational time, producing new and emergent functional structures that provide increased adaptive fitness in changing environments.

살아 있는 실체는 대사, 성장, 사망, 재생산, 반응, 이동, 복잡한 조직 기능 구조, 유전적 가변성, 세대 시간에 걸쳐 진화할 수 있는 라인업을 가지고 있어 변화하는 환경에 적응력을 제공하는 새롭고 새로운 기능 구조를 생산한다.

Reproduction involves not only the replication of the nucleic acids that carry the genetic information but the epigenetic building of the organism through a sequence of developmental steps.

생식은 유전 정보를 전달하는 핵산의 복제뿐만 아니라 일련의 발달 단계를 통해 유기체의 후생유전학적 구조를 포함한다.

Such reproduction through development occurs within a larger life-cycle of the organism, which includes its senescence and death.

발달을 통한 그러한 생식은 노쇠와 죽음을 포함하는 유기체의 더 큰 라이프사이클 내에서 일어난다.

Something that is alive has organized, complex structures that carry out these functions as well as sensing and responding to interior states and to the external environment and engaging in movement within that environment. 살아 있는 어떤 것은 내부 상태와 외부 환경을 감지하고 반응하며 그 환경 내에서 움직임에 관여할 뿐만 아니라 이러한 기능을 수행하는 체계적이고 복잡한 구조를 가지고 있다.

It must be remembered that evolutionary phenomena are an inextricable aspect of living systems; any attempt to define life in the absence of this diachronic perspective will be futile.

진화 현상은 생물체계의 불가분의 한 측면이라는 것을 기억해야 한다; 이 디아크로닉적 관점이 없는 상태에서 생명을 정의하려는 어떠한 시도도 헛된 것이 될 것이다.

It will be argued below that living systems may be defined as open systems maintained in steady-states, far-from-equilibrium, due to matter-energy flows in which informed (genetically) autocatalytic cycles extract energy, build complex internal structures, allowing growth even as they create greater entropy in their environments, and capable, over

 

아래에서는 (유전자적으로) 자기 분석적 주기가 에너지를 추출하고 복잡한 내부 구조를 구축하여 환경에서 더 큰 엔트로피를 발생시키더라도 성장을 가능하게 하는 물질 에너지 흐름으로 인해 생활 시스템이 안정적이고 평형과는 거리가 먼 개방형 시스템으로 정의될 수 있다고 주장할 것이다.

multigenerational time of evolution.

 

진화의 다세대 시간


1. Prelude:1. 전주곡: Mechanist/Vitalist Debate 기계론자/활력론자 논쟁

The last words written by Shelley in his unfinished poem The Triumph of Life were “Then, what is life? 셸리가 미완성 시 <생명의 승리>에서 쓴 마지막 말은 "그럼, 인생은 무엇인가? I cried.” 울었어." Clearly Shelley meant this in the everyday sense rather than the technical usage of what distinguishes animate from inanimate. 분명히 Shelley는 무엇이 생기와 무생물을 구별하는 기술적인 사용보다는 일상적인 의미에서 이것을 의미했다. C.U.M Smith (1976) in his The Problem of Life sets out to answer Shelley's question by addressing the problem not only of how matter could be alive but also be conscious. C.U.M Smith(1976)는 그의 <삶의 문제>에서 셸리의 질문에 어떻게 물질이 살아 있을 수 있을 뿐 아니라 의식도 있을 수 있는지에 대한 문제를 다루면서 대답하기 시작한다. Although conscious, living matter was a problem for Democritean philosophers, it was not for other pre-Socratics nor for Aristotle for whom living beings where paradigmatic. 의식적인, 생활 물질은 데모크라테스 철학자들에게는 문제였지만, 그것은 다른 사회 이전의 철학자들을 위한 것도 아니고 패러다임적인 존재들을 위한 아리스토텔레스를 위한 것도 아니었다. “The phenomenon which seemed to [Aristotle] most basic in the apparent flux of the world was the unity and persistence of the individual living being” (Smith 1976, p. 72). "세계의 외견상 가장 기본적인 것으로 보이는 현상은 개인생활의 단결과 끈기였다."(Smith 1976, 페이지 72) Indeed, Aristotle's biology and the philosophy he developed from it was sophisticated and enduring (Lennox 2001). 실제로 아리스토텔레스의 생물학과 그로부터 그가 발전시킨 철학은 정교하고 오래 지속되었다(Lennox 2001). Thus for Aristotle there was no problem of life, although there was a problem for an atomist view of nature that seemed inconsistent with biological phenomena (Rosen 1991). 따라서 아리스토텔레스에게는 생물학적 현상과 일관성이 없어 보이는 자연에 대한 원자론자의 견해에 문제가 있었지만 생명에는 문제가 없었다(Rosen 1991년). Descartes radically reconceptualized the problem by his dualism of matter and mind; life was a problem for which an explanation was to be sought in the mechanistic interactions of matter, and there was the question of how mind was related to the matter in living beings. 데카르트는 물질과 정신에 대한 그의 이원론에 의해 문제를 급진적으로 재조명했다; 인생은 물질의 기계론적 상호작용에서 설명을 구해야 하는 문제였고, 정신이 살아 있는 존재에서 그 문제와 어떻게 연관되어 있는지에 대한 문제가 있었다. As chemistry developed as a discipline in the eighteenth and nineteenth centuries the goal of most advanced thinkers was to develop explanatory theories of living things in terms of chemical matter and mechanisms. 18세기와 19세기에 화학이 하나의 학문으로서 발전함에 따라, 대부분의 진보된 사상가들의 목표는 화학 물질과 메커니즘의 측면에서 생물에 대한 설명 이론을 개발하는 것이었다. Such attempts at what must be admitted to be premature reduction were resisted by critics, including some vitalists, whose positions covered a wide range from romantic anti-materialists, through chemists seeking a new type of Newtonian force (“vital force”) in nature, to materialists who had an intuition of the importance of the organized whole (F 이러한 조기감축이 인정되어야 할 것에 대한 시도는 일부 생명주의자들을 포함한 비평가들에 의해 저항되었는데, 그의 입장은 낭만적인 반물질주의자들로부터, 자연에서 새로운 형태의 뉴턴적인 힘("활력적인 힘")을 추구하는 화학자들, 조직적인 전체의 중요성을 직감하는 물질주의자들(F)을 통해서였다.ruton 1972, 1999).루턴 1972, 1999.

The debate between the “mechanists” and the “vitalists” about the relationship of matter and life as well as matter and mind, spilled over into the twentieth century, especially during the time that biochemists were defining their field as a separate discipline from chemistry or physiology. 물질과 생명의 관계는 물론 물질과 생명의 관계에 대한 "기계학자"와 "생물학자" 사이의 논쟁은 특히 생화학자들이 자신의 분야를 화학이나 생리학과는 별개의 분야로 규정하던 시기에 20세기로 흘러갔다. Four books published around 1930 capture the flavor of the debate (Woodger 1929; Haldane 1929, 1931; Hogben 1930). 1930년경에 출판된 네 권의 책은 토론의 정취를 담아낸다(우저 1929; 할데인 1929, 1931; 호그벤 1930). J.S. Haldane, a physiologist, resisted reduction of biological phenomena to mechanistic explanations, as he saw the structure of biological organisms and their action being disanalogous to what was seen in physical systems. 생리학자 J.S. 할데인은 생물학적 유기체의 구조와 그 작용이 물리적 시스템에서 보이는 것과 분리되는 것을 보고 생물학적 현상의 감소를 기계론적 설명에 저항했다. The laws of chemistry and physics just were not robust enough to account for biology. 화학과 물리학의 법칙은 생물학을 설명할 만큼 충분히 강하지 않았다. “It is life we are studying in biology, and not phenomena which can be represented by causal conceptions of physics and chemistry” Haldane 1931, p. 28). "물리학과 화학의 인과적 개념으로 대표될 수 있는 현상이 아니라 생물학에서 연구하고 있는 것이 생명이다." Haldane 1931, 페이지 28). He rejects, however, the search for a vital force since it would reduce the complexity of biological phenomena to a single principle. 그러나 생물학적 현상의 복잡성을 단일 원리로 줄일 수 있기 때문에 그는 생명력을 찾는 것을 거부한다. Rather, the phenomena of biology can only be understood in a holistic perspective that is faithful to the complexity observed in biological phenomena. 오히려 생물학의 현상은 생물학적 현상에서 관찰되는 복잡성에 충실한 총체적 관점에서만 이해할 수 있다. Lancelot Hogben, in his book The Nature of Living Matter, which was dedicated to Bertrand Russell, argues for a reductionist epistemology and ontology. 랜슬롯 호그벤은 베르트랑 러셀에게 바쳐진 그의 저서 <살아있는 물질의 본질>에서 환원주의적 인식론과 온톨로지를 주장한다. For Hogben, as for Haldane, consciousness is seen as an integral part of the problem of life, “an inquiry into the nature of life and the nature of consciousness presupposes the necessity of formulating the problem in the right way” (Hogben 1930, pp. 31–32). Haldane에 대해서는 Hogben에게 있어서 의식은 생명 문제의 본질과 의식의 본성에 대한 조사에서는 문제를 올바른 방법으로 형성할 필요성을 전제로 한다(Hogben 1930, 페이지 31–32). Indeed, “no problem of philosophy is more fundamental than the nature of life” (Hogben 1930, p. 80). 실제로, "철학의 문제는 삶의 본질보다 더 근본적인 것"이다. (호그벤 1930, 페이지 80). But for Hogben the nature, indeed glory, of science is that its answers are always incomplete and it does not seek the finality that he saw as the goal of philosophy. 그러나 호그벤에게 있어서 과학의 본질, 실로 영광스러운 것은 과학의 해답은 항상 불완전하며 그가 철학의 목표로 본 최종성을 추구하지 않는다는 것이다. He saw no need to abandon the reductionist methodology that biochemistry was developing and argued that Whitehead's assumption that science would reveal a universe consistent with human ethical predilections should be reversed and that philosophy would have to conform with the findings of science. 그는 생화학이 개발하고 있던 환원론적 방법론을 버릴 필요가 없다고 보고 과학이 인간의 윤리적 성향과 일치하는 우주를 드러낼 것이라는 화이트헤드의 가정은 뒤집어져야 하며 철학은 과학의 발견에 부합해야 한다고 주장했다. Woodger saw the issues in the mechanist-vitalist debate as more complex than either side admitted. 우더는 기계론자와 자본론자 논쟁의 쟁점들이 어느 한쪽이 인정한 것보다 더 복잡하다고 보았다. The resolution would come from a recognition of the primary importance of biological organization and of levels of biological organization, “by a cell therefore I shall understand a certain type of biological organization, not a concrete entity” (Woodger 1929, p. 296, emphasis in original). 결의안은 생물학적 조직과 생물학적 조직 수준의 주요 중요성을 "세포에 의해, 그러므로 나는 구체적인 실체가 아닌 특정 유형의 생물학적 조직을 이해해야 한다"는 인식에서 나올 것이다(Woodger 1929, 페이지 296, 원문 강조). Woodger urged abandoning the use of the word ‘life’ in scientific discourse on the grounds that ‘living organism’ was what had to be explained. 우더는 '살아 있는 유기체'가 설명되어야 할 것이라는 근거에 따라 과학적인 담론에서 '생명체'라는 말의 사용을 포기하라고 촉구했다. He saw the question of how life arose as being outside science. 그는 생명이 어떻게 생겨났는지에 대한 질문을 과학의 바깥에 있는 것으로 보았다.

2. The Biochemical Conception of Life2. 생물의 생화학적 개념

Perhaps the venue where the issue of the nature of life was most urgently addressed was the Department of Biochemistry at the University of Cambridge. 아마도 생명의 본질에 대한 문제가 가장 시급히 다뤄진 장소는 케임브리지 대학 생화학부였을 것이다. During the first half of the twentieth century, under the guidance of its first Sir William Dunn Professor of Biochemistry, Sir Frederick Gowland Hopkins, the department set much of the conceptual framework, methodology, as well as educating many of the leaders in the field (Needham & Baldwin 1949; Weatherall and Kamminga 1992; Kamminga & Weathera 20세기 상반기 동안, 최초의 윌리엄 던 교수 생화학, 프레더릭 가울 랜드 홉킨스의 지도 아래, 백화, 개념적인 기본 틀을, 방법론뿐만 아니라 분야에서(니덤 및 지도자들의 많은 교육 많이 설정하 볼드윈 1949년, Weatherall과 Kamminga 1992년;Kamminga&W.eatherall 1996; Weatherall & Kamminga 1996; Kamminga 1997; de Chadarevian 2002).ll 1996; Weatherall & Kamminga 1996; Kamminga 1997; de Chadarevian 2002). Hopkins's vision of the emerging field of biochemistry was that it was a discipline in its own right (not an adjunct to medicine or agriculture nor applied chemistry) that needed to explore all biological phenomena on the chemical level. 생화학 분야의 신흥 분야에 대한 홉킨스의 비전은 화학적 차원에서 모든 생물학적 현상을 탐구할 필요가 있는 그 자체(의학이나 농업의 부속물이 아니며 화학도 응용하지 않는 것)의 규율이었다. More importantly, Hopkins had a belief that although living things did not disobey any physical or chemical laws they instantiated them in ways that required understanding of biological phenomena, constraints, and functional organization. 더 중요한 것은, 홉킨스는 생물이 어떠한 물리적 또는 화학적 법칙을 거역하지는 않았지만 생물학적 현상, 제약조건, 기능적 조직에 대한 이해가 필요한 방법으로 생물을 인스턴스화시킨다는 믿음을 가지고 있었다. In his influential address to the British Association for the Advancement of Science given in 1913, Hopkins rejected both the reductionism of organic chemists who sought to deduce in vitro what had to happen in vivo and the crypto-vitalism of many physiologists who viewed the protoplasm of living cells as itself alive and irreducible to chemical a 홉킨스는 1913년 영국과학진흥협회(British Association for Science Advancement of Sciences)에 보낸 영향력 있는 연설에서 체외에서 일어나야 할 일을 추론하려는 유기화학자들의 환원주의와 살아있는 세포의 원형을 그 자체로 생동감 있고 화학적으로 해석할 수 없는 것으로 본 많은 생리학자들의 암호증-바이탈리즘을 모두 거부했다.nalysis (Hopkins 1913 [1949]).nalcusion (Hopkins 1913 [1949]). What Hopkins offered instead was a view of the cell as a chemical machine, obeying the laws of thermodynamics and physical chemistry generally, but having organized molecular structures and functions. 대신 홉킨스가 제시한 것은 열역학 및 물리적 화학의 법칙을 일반적으로 준수하면서도 분자 구조와 기능을 조직적으로 갖춘 세포를 화학 기계로 보는 시각이었다. The chemistry underlying metabolism was catalyzed and regulated by enzymes, protein catalysts, and involved, because of biological necessity, small changes in structure and energy of well-defined chemical intermediates. 신진대사의 기초가 되는 화학은 효소, 단백질 촉매에 의해 촉매화되고 조절되었으며, 생물학적 필요성 때문에 잘 정의된 화학 매개체의 구조와 에너지의 작은 변화 때문에 관여되었다. The living cell is “not a mass of matter composed of a congregation of like molecules, but a highly differentialed system: the cell, in the modern phraseology of physical chemistry, is a system of co-existing phases of different constitutions” (Hopkins 1913 [1949] p. 151). 살아있는 세포는 "유사한 분자의 집합체로 구성된 물질 덩어리가 아니라 고도로 미분화된 시스템이다: 물리 화학의 현대적 용어학에서, 세포는 다른 구성의 상이 공존하는 시스템이다"(홉킨스 1913 [1949] 페이지 151). Understanding how the organization was achieved was just as important as knowing how the chemical reactions occurred. 조직이 어떻게 이루어졌는지 이해하는 것은 화학반응이 어떻게 일어났는지 아는 것만큼이나 중요했다. For Hopkins life is “a property of the cell as a whole, because it depends upon the organization of processes” (Hopkins 1913 [1949] p. 152). 홉킨스에게 있어 홉킨스 생활은 "과정 구성에 따라 달라지기 때문에 세포 전체의 재산"이다(Hopkins 1913 [1949] 페이지 152). Indeed, Hopkins was impressed with the philosophy of Whitehead with its part/whole relationships and emphasis on processes rather than entities (Hopkins 1927 [1949]; Kamminga & Weatherall 1996) and it formed an explicit foundation for the research program he developed at Cambridge and became an implicit assumption in the research programs develope 실제로, 홉킨스 화이트 헤드의 철학으로part/whole 관계와 역점을 두고(홉킨스 1927년[1949년];Kamminga&Weatherall 1996년)과정보다는 단체가 해외에 소유 관리하고, 연구 프로그램에 사람이 된 묵시적 가정 devel 그는 캠브리지에서 개발한 조사 프로그램에 명시적 기반을 형성했다.oped by many of the students who trained there (Prebble & Weber 2003).그곳에서 훈련한 많은 학생들에 의해. A member of the department, Joseph Needham became actively engaged in carrying Hopkins's vision to the broader intellectual community writing on the philosophical basis of biochemistry (Needham 1925). 그 부서의 일원인 조셉 니덤은 생화학(Needham 1925)의 철학적 기초 위에 홉킨스의 비전을 보다 넓은 지적 공동체 집필에 적극적으로 참여하게 되었다. He followed Hopkins too in asserting that the crucial question no longer was the relationship of living and non-living substance but also of mind and body, with biochemistry conceding to philosophy and the then incipient neurosciences, the latter question, so that it could focus on learning about living matter. 그는 또한 홉킨스가 생화학이 철학과 그 당시 초기의 신경과학인 생화학이 생물에 대한 학습에 초점을 맞출 수 있도록 생화학과 무생물의 관계가 아니라 심신의 관계라고 주장함에 있어서 홉킨스의 뒤를 따랐다. Another member of the biochemistry department, N.W. Pirie, tackled the question of defining life and concluded that it could not be adequately defined by a list of qualities nor even processes since life “cannot be defined in terms of one variable” (Pirie 1937, p. 21–22). 생화학부의 또 다른 멤버인 N.W.피리는 생물을 정의하는 문제에 대해 태클했고, 생명은 "한 가지 변수의 관점에서 정의될 수 없다"(Pirie 1937, 페이지 21–22)고 하여, 품질 목록이나 심지어 과정으로도 적절하게 정의할 수 없다고 결론지었다. There was a challenge for Hopkins's program to figure out how rather simple physical and chemical laws could produce the complexity of living systems. 홉킨스의 프로그램에는 다소 단순한 물리적 화학적 법칙이 어떻게 생물체계의 복잡성을 만들어낼 수 있는지 알아내는 과제가 있었다.

During the 1930s an informal group, known as the Biotheoretical Gathering met in Cambridge and included several members of the biochemistry department (Joseph & Dorothy Needham, and Conrad Waddington) as well as a number of other Cambridge scientists (such as crystallographers J.D. 1930년대 동안, 생화학 모임이라고 알려진 비공식 모임은 케임브리지에서 만났고 생화학과의 몇몇 구성원(조셉 & 도로시 니덤, 콘래드 와딩턴)뿐만 아니라 다른 많은 케임브리지 과학자들(결정학자 J.D.와 같은)도 포함했다. Bernal and Dorothy Crowford Hodgkins) and philosophers (J.H. Woodger and Karl Popper). 베르날과 도로시 크로포드 호지킨스)와 철학자들(J.H.우드거와 칼 포퍼)이다. This group was consciously exploring the philosophical approach of Whitehead with the goal of building a trans-disciplinary theoretical and philosophical biology which helped lay the foundation for the conceptual triumph of molecular biology after World War II (Abir-Am 1987; de Chadarevian 2002). 이 그룹은 제2차 세계 대전 이후 분자생물학의 개념적 승리를 위한 기초를 마련하는 데 도움을 주는 학제간 횡단적인 이론적, 철학적 생물학을 건설한다는 목표로 의식적으로 화이트헤드의 철학적 접근을 탐구하고 있었다(Abir-Am 1987; de Chadarevian 2002). The research program of Hopkins was well established by this period and especially through the Needhams it was linked with the work of the Biotheoretical Gathering, influencing J.B.S. Haldane, who made major contributions to enzymology and to forging the modern evolutionary synthesis or neo-Darwinism. 홉킨스의 연구 프로그램은 이 시기까지 잘 확립되었고 특히 니덤스를 통해 생물신학적 모임의 작업과 연계되어 효소에 주요한 공헌을 한 J.B.S. 할다네에게 영향을 미치며 현대 진화적 합성이나 신 다윈주의를 위조한 것이다. Haldane, along with Bernal, would play a major, early role in moving the concern from beyond the nature of life to its origin as a subject for scientific study. Haldane은 베르날과 함께 생명의 본질을 넘어 과학연구의 대상으로서 그 근원으로 관심을 옮기는 중대하고 초기 역할을 할 것이다. Haldane suspected, along with Pirie, that a fully satisfactory definition of life was impossible, but he asserted that the material definition was a reasonable goal for science. Haldane은 Pirie와 함께 완전히 만족스러운 삶의 정의가 불가능하다고 의심했지만, 그는 물질적 정의가 과학을 위한 합리적인 목표라고 주장했다. He saw life as “a pattern of chemical processes. 그는 생물을 "화학 작용의 한 패턴"으로 보았다. This pattern has special properties. 이 패턴은 특별한 특성을 가지고 있다. It begets a similar pattern, as a flame does, but it regulates itself as a flame does not.” (Haldane 1947, p. 56). 그것은 불꽃이 그러하듯이 비슷한 패턴을 얻지만, 불꽃이 그렇지 않은 것처럼 스스로를 조절한다."(Haldane 1947, 페이지 56). Use of the flame metaphor for cellular metabolic activity implied a nonequilibrium process in an open system capable of reproduction but also, by the limit of the metaphor, self regulation. 세포 대사 활동을 위한 불꽃 은유의 사용은 생식이 가능한 개방된 시스템에서의 불균형 과정을 의미하고 또한 은유의 한계에 의해 자기 조절을 의미했다. In this Haldane reflected the shifting concern to working out how matter and physical laws could lead to biological phenomena. Haldane은 물질과 물리적 법칙이 생물학적 현상으로 어떻게 이어질 수 있는지 연구하기 위해 변화하는 우려를 반영했다.

By the time of World War II it was meaningful to address the question of “what is life?” in molecular terms and fundamental physical laws. 제2차 세계대전이 시작될 무렵에는 "생명체가 무엇인가?"라는 문제를 분자적 용어와 근본적인 물리적 법칙으로 다루는 것이 의미가 있었다. It was clear that there were several distinct ways in which matter in living systems behaved in ways different from non-living systems. 생물체계에 물질이 무생물체제와 다른 방식으로 작용하는 몇 가지 뚜렷한 방법이 있다는 것은 분명했다. For example, how could genetic information be instantiated at a molecular level given that ensembles of atoms or molecules behaved statistically? 예를 들어, 원자나 분자의 앙상블이 통계적으로 작용했다는 점에서 어떻게 분자 수준에서 유전 정보가 인스턴스화될 수 있었는가? Or, how could biological systems generate and maintain their internal order in the face of the imperative of the second law of thermodynamics that all natural systems proceed with increasing entropy? 아니면, 모든 자연 시스템이 엔트로피를 증가시키는 것을 진행하는 열역학 제2법칙에 직면하여 생물학적 시스템이 어떻게 내부 질서를 생성하고 유지할 수 있었는가?

3. Schrödinger's What is Life?3. 슈뢰딩거의 삶이란 무엇인가?

In 1943 Erwin Schrödinger gave a series of lectures at the Dublin Institute for Advanced Studies, which were published as What is Life? in 1944 (Schrödinger 1944). 1943년(슈뢰딩거 1944) 에르윈 슈뢰딩거(Erwin Schrödinger 1944)는 더블린 고등연구소에서 일련의 강연을 하였는데, 이 강연은 1944년(슈뢰딩거 1944)에 What is Life?로 출판되었다. This little book had a major impact on the development of twentieth century biology, especially upon Francis Crick and James Watson and other founders of molecular biology (Judson 1979; Murphy & O'Neill 1995). 이 작은 책은 특히 프랜시스 크릭과 제임스 왓슨과 분자생물학의 다른 창시자들에게 20세기 생물학의 발전에 큰 영향을 끼쳤다(Judson 1979; Murphy & O'Neill 1995). Schrödinger did not break new ground, as has been pointed out by Perutz (1987), but rather gathered together several strands of research and stated his questions in a stark and provocative manner. 슈뢰딩거는 페루츠(1987년)가 지적한 바와 같이 새로운 지반을 개척하지 않고 오히려 여러 가닥의 연구를 모아 자신의 질문을 적나라하고 도발적인 태도로 진술했다. Building upon the demonstration by Max Delbrueck that the size of the ‘target’ of mutations caused by X-rays had the dimensions of a molecule of a thousand or so atoms, Schrödinger wondered how it could be that there could be sustained order in the molecules responsible for heredity when it was well known that statistical ensembles of molecules qu X선에 의해 야기된 돌연변이의 '표적'의 크기가 천여 개의 원자의 분자 크기를 가지고 있다는 막스 델브뤼크의 시연을 바탕으로 슈뢰딩거는 분자의 통계적 앙상블이 quu로 잘 알려져 있을 때 어떻게 유전의 책임이 있는 분자에 지속적인 질서가 존재할 수 있는지 궁금해했다.ickly became disordered (with increased entropy as predicted by the second law of thermodynamics).Ickly는 (열역학 제2법칙에 의해 예측된 엔트로피 증가와 함께) 질서 정연해졌다. The problem of heredity then was reformulated at the molecular level as to how order could give rise to order? 그리고 나서 유전 문제는 어떻게 질서가 질서를 만들어 낼 수 있는지에 대해 분자 수준에서 개혁되었는가? The other main topic that concerned Schrödinger was the thermodynamics of living things in general, that is, how could they generate order from disorder through their metabolism? 슈뢰딩거와 관련된 또 다른 주요 주제는 일반적으로 생물의 열역학, 즉 신진대사를 통해 어떻게 무질서에서 질서를 발생시킬 수 있는가 하는 것이었습니다. It was through answering these two specific questions from the perspective of a physicist that Schrödinger sought to answer the big question, what is life? 슈뢰딩거가 생명이란 무엇인가라는 큰 질문에 답하고자 했던 것은 물리학자의 입장에서 이 두 가지 구체적인 질문에 대한 대답을 통해서였다.

It was the answer to the first question that captured the attention of the founders of the new biology. 그것은 새로운 생물학의 창시자들의 관심을 사로잡은 첫 번째 질문에 대한 대답이었다. Schrödinger argued that the molecular material had to be an ‘aperiodic’ solid that had embedded in its structure a ‘miniature code.’ 슈뢰딩거는 분자 물질이 그 구조에 '소형 코드'를 내장한 '아페리오디컬' 고형이어야 한다고 주장했다. That is, the pattern of constituent atoms comprising the molecule of heredity would not have a simple periodic repetitive order of the same constituents or subunits, but rather would have a higher-level order due to the pattern of its molecular subunits; it was this higher-level but aperiodic order that would contain the coded information of hered 즉, 유전의 분자를 구성하는 구성 원자의 패턴은 동일한 성분이나 서브유닛의 단순한 주기적 반복순서가 아니라 분자 서브유닛의 패턴으로 인해 더 높은 수준의 순서를 가질 것이다; 그것은 유전의 코드화된 정보를 포함하는 더 높은 수준이지만 주기적인 순서였다.ity. The elucidation of the structure of DNA and the explosion of our understanding of molecular genetics has eclipsed the other, but to Schrödinger equal, arm of the argument, namely that the most important aspect of metabolism is that it represents the cell's way of dealing with all the entropy that it cannot help but produce as it builds its int이티. DNA 구조의 설명과 분자 유전학에 대한 우리의 이해의 폭발은 다른 한 쪽도 생략했지만, 슈뢰딩거에게 있어서 논쟁의 팔, 즉 신진대사의 가장 중요한 측면은 그것이 세포의 내부를 형성하면서 생산하지 않을 수 없는 모든 엔트로피를 다루는 세포의 방식을 대변한다는 것이다.ernal order, what Schrödinger termed ‘negentropy.’슈뢰딩거가 'negentropy'라고 부른 'ernal order'. He noted that the cell must maintain itself in a state away from equilibrium since thermodynamic equilibrium is the very definition of death. 그는 열역학적 평형이 죽음에 대한 바로 그 정의이기 때문에 세포는 평형으로부터 떨어진 상태로 유지되어야 한다고 언급했다. By creating internal order and organization within a living system (cells, organisms or ecosystems) the metabolic activities must produce greater disorder in the environment, such that the second law is not violated. 생활 시스템(세포, 유기체 또는 생태계) 내에서 내부 질서와 조직을 만들어냄으로써 신진대사 활동은 제2법칙이 위반되지 않도록 환경에서 더 큰 장애를 생성해야 한다. He tied the two notions, of order from order and order from disorder, together by claiming, “an organism's astonishing gift of concentrating a ‘stream of order’ on itself and thus escaping the decay into atomic chaos — of ‘drinking orderliness’ from a suitable environment — seems to be connected with the presence of ‘aperiodic solids’, the chromos 그는 '질서의 흐름'을 자신에게 집중시켜 적절한 환경에서 '음주질질질질서의' 붕괴를 탈피하는 유기체의 놀라운 재능은 염색체인 '주기적 고형물'의 존재와 관련이 있는 듯 하다'고 주장하면서 무질서의 질서와 질서의 두 개념을 묶었다.ome molecules, which doubtless represent the highest degree of well-ordered atomic association we know of — much higher than the ordinary periodic crystal — in virtue of the individual role every atom and every radical is playing here” (Schrödinger 1944, 77).오메 분자는 모든 원자와 모든 급진파들이 이곳에서 놀고 있는 개별적인 역할 덕분에 우리가 알고 있는 가장 높은 수준의 질서 정연한 원자 결합을 나타낸다."(슈뢰딩거 1944, 77). Although Schrödinger was giving a physicist's answer to Shelley's question, he did not confine himself only to the question of what distinguished the living from the non-living and in the epilogue reflects on free will and consciousness. 슈뢰딩거는 셸리의 물음에 물리학자의 대답을 하고 있었지만, 무생물과 에필로그 속의 생물이 무엇이 자유 의지와 의식을 반영하느냐는 문제에만 국한되지 않았다. As with so many previous attempts to address the nature of life, the issue of consciousness was seen by Schrödinger too as connected to that of life itself. 생명의 본질을 다루려는 이전의 수많은 시도와 마찬가지로 의식의 문제도 슈뢰딩거에 의해서도 삶의 그것과 연관되어 있는 것으로 보였다.

4. Schrödinger's Dual “Legacy”4. 슈뢰딩거의 이중 "레거시"

The impact of Schrödinger's slim volume on a generation of physicists and chemists who were lured to biology and who founded molecular biology is well chronicled (Judson 1979; Kay 2000). 슈뢰딩거의 얇은 볼륨이 생물학에 이끌려 분자생물학을 창시했던 물리학자와 화학자의 세대에게 미치는 영향은 잘 만성화된다(Judson 1979; Kay 2000). Knowledge about the protein and nucleic acid basis of living systems continues to be obtained at an accelerating rate, with the sequencing of the human genome as a major landmark along this path of discovery. 생명체계의 단백질과 핵산 기반에 대한 지식은 계속해서 가속도로 얻어지고 있으며, 인간 게놈의 염기서열은 이러한 발견의 경로를 따라 주요한 랜드마크로 자리잡았다. The “self-replicating” DNA has become a major metaphor for understanding all of life. "자기복제" DNA는 모든 생명을 이해하는 주요한 은유가 되었다. The world is divided into replicators, which are seen to be fundamental and to control development and be the fundamental level of action for natural selection, and interactors, the molecules and structures coded by the replicators (Dawkins 1976, 1989). 세계는 복제자로 나뉘는데, 복제자는 근본적이고 개발을 통제하며 자연선택을 위한 기본적인 행동수준이 되는 것으로 보이며, 상호작용자, 복제자에 의해 암호화된 분자와 구조(Dawkins 1976, 1989년)이다. Indeed, Dawkins relegates organisms to the status of epiphenomenal gene-vehicles, or survival machines. 실제로, 도킨스는 유기체를 후천적인 유전자 차량, 즉 생존 기계의 지위에 종속시킨다. A reaction has set in to what is perceived as an over-emphasis on nucleic acid replication (see for example Keller 1995, 2002; Moss 2003). 핵산 복제에 대한 과도한 강조로 인식되는 것에 대한 반응이 나타났다(예: 켈러 1995, 2002; 모스 2003 참조). In particular developmental systems theorists have argued for a causal pluralism in developmental and evolutionary biology (see essays and references in Oyama, Griffiths, & Gray 2001). 특히 발달 시스템 이론가들은 발달 및 진화 생물학에서 인과적 다원주의를 주장해 왔다(오야마, 그리피스, & 그레이 2001의 에세이와 참고문헌 참조). However, the rapid progress in gene sequencing is producing fundamental insights into the relationship of genes and morphology and has added important dimensions to our understanding of evolutionary phenomena (see for example Graur & Li 2000; Carroll, Grenier, & Weatehrbee 2001). 그러나 유전자 염기서열의 급속한 진전은 유전자와 형태학의 관계에 대한 근본적인 통찰력을 생산하고 있으며 진화 현상에 대한 우리의 이해에 중요한 차원을 추가했다(예: Graur & Li 2000; Carroll, Grenier, Weatherbee 2001 참조).

What is less known is the over half-a-century of work inspired, in part, by the other pillar of Schrödinger's argument, namely how organisms gain order from disorder through the thermodynamics of open systems far from equilibrium (Schneider & Kay 1995). 덜 알려진 것은 부분적으로 슈뢰딩거의 주장의 다른 기둥, 즉 균형이 멀리 떨어진 열린 시스템의 열역학을 통해 유기체가 무질서에서 질서를 얻는 방법에 의해 영감을 받은 반세기가 넘는 작업이다(Schneider & Kay 1995). Prominent among early students of such nonequilibrium thermodynamics was Ilya Prigogine (1947). 이러한 불균형 열역학 초기 학생들 사이에서 두드러진 것은 일리야 프리고긴(1947)이었다. Prigogine influenced J. D. Prigogine은 J. D.에 영향을 미쳤다. Bernal in his 1947 lectures on the physical basis of life to start to understand both how organisms produced their internal order while affected their environment by not only their activities but through created disorder in it (Bernal 1951). 베르날은 1947년 생물의 물리적 기반에 관한 강의에서 유기체가 어떻게 내부 질서를 생산하면서 그들의 활동뿐만 아니라 그 안에서 생성된 무질서를 통해 환경에 영향을 미치는가를 이해하기 시작했다(Bernal 1951년). Harold Morowitz explicitly addressed the issue of energy flow and the production of biological organization, subsequently generalized in various ways (Morowitz 1968; Peacocke 1983; Brooks and Wiley 1986: Wicken 1987; Schneider 1993; Swenson 2000; Morowitz 2002). 해롤드 모로위츠는 에너지 흐름과 생물학적 조직의 생산에 관한 문제를 명시적으로 언급했으며, 이후 다양한 방식으로 일반화되었다(Morowitz 1968; Pacocke 1983; Brooks and Wiley 1986: Wicken 1987; Schneider 1993; Swenson 2000; Morowitz 2002). Internal order can be produced by gradients of energy (matter/energy) flows through living systems. 내부 질서는 생활 시스템을 통한 에너지(물질/에너지) 흐름의 구배들에 의해 생성될 수 있다. Structures so produced help not only draw more energy through the system, lengthen its retention time in the system, but also dissipate degraded energy, or entropy, to the environment, thus paying Schrödinger's “entropy debt.” 그렇게 생성된 구조는 시스템을 통해 더 많은 에너지를 끌어모을 뿐만 아니라, 시스템의 유지 시간을 연장할 뿐만 아니라, 퇴화된 에너지, 즉 엔트로피를 환경으로 소멸시켜 슈뢰딩거의 "엔트로피 부채"를 지불하도록 도와준다. Living systems then are seen an instance of a more general phenomena of dissipative structures. 그러면 생물체계는 보다 일반적인 소멸 구조 현상의 한 예를 보게 된다. “With the help of this energy and matter exchange with the environment, the system maintains its inner non-equilibrium, and the non-equilibrium in turn maintains the exchange process…. "이 에너지와 물질의 환경과의 교환을 통해, 시스템은 내부의 불균형을 유지하고, 비균형화는 교환 과정을 유지한다… A dissipative structure continuously renews itself and maintains a particular dynamic regime, a globally stable space-time structure” (Jantsch 1980). 방산 구조는 지속적으로 스스로를 갱신하고 특정한 동적 체제, 즉 세계적으로 안정된 공간 구조(Jantsch 1980)를 유지한다. However, thermodynamics can deal only with the possibility that something can occur spontaneously; whether self-organizing phenomena occur depend upon the actual specific conditions (initial and boundary) as well as the relationships among components (Williams & Frausto da Silva 1999). 그러나 열역학에서는 어떤 것이 자연적으로 발생할 수 있는 가능성만을 다룰 수 있다; 자기 조직 현상이 발생하는지는 구성 요소 간의 관계뿐만 아니라 실제 특정 조건(초기 및 경계)에 따라 달라진다(Williams & Frausto da Silva 1999).

Seeing the cell as a thermodynamic ‘dissipative structure’ was not to be considered as reducing the cell to physics, as Bernal pointed out, rather a richer physics of what Warren Weaver called “organized complexity” (in contrast to simple order or “disorganized complexity”) was being deployed (Weaver 1948). The development of this “new” physics of open systems and the dissipative structures that arise in them was the fulfillment of the development that Schrödinger foresaw (Rosen 2000). Dissipative structures in physical and chemical systems are phenomena that are explained by nonequilibrium thermodynamics (Prigogine & Stengers 1984). The emergent, self-organizing spatio-temporal patterns observed in the Belousov-Zhabotinski reaction are also seen in biological systems (such as in slime mold aggregation or electrical patterns in heart activity) (Tyson 1976; Sole and Goodwin 2000). Indeed, related self-organizational phenomena pervade biology (Camazine et al. 2001). Such phenomena are seen not only in cells and organisms, but in ecosystems, which reinforces the notion that a broader systems perspective is needed as part of the new physics (Ulanowicz 1997). Important to such phenomena are the dynamics of non-linear interactions (where responses of a system can be much larger than the stimulus) and autocatalytic cycles (reaction sequences that are closed on themselves and in which a larger quantity of one or more starting materials is made through the processes). Given that the catalysts in biological systems are coded in the genes of the DNA, one place to start defining life is to view living systems as informed, autocatalytic cyclic entities that develop and evolve under the dual dictates of the second law of thermodynamics and of natural selection (Depew & Weber 1995; Weber & Depew 1996). Such an approach non-reductively connects the phenomena of living systems with basic laws of physics and chemistry (Harold 2001). Others intuit that an even richer physics is needed to adequately capture the self-organizing phenomena observed in biology and speculate that a “fourth law” of thermodynamics about such phenomena may ultimately be needed (Kauffman 1993, 1995, 2000). In any event, increasingly the tools developed for the “sciences of complexity” and being deployed to develop better models of living systems (Depew & Weber 1995; Kauffman 2000). Robert Rosen has reminded us that complexity is not life itself but what he terms “the habitat of life” and that we need to make our focus on the relational. “Organization inherently involves functions and their interrelations” (Rosen 1991, 280). Whether the existing sciences of complexity are sufficient or a newer conceptual framework is needed remains to be seen (Harold 2001). Living beings exhibit complex, functional organization and an ability to become more adapted to their environments over generational time, which phenomena represent the challenge to physically-based explanations based upon mechanistic (reductionistic) assumptions. By appealing to complex systems dynamics there is the possibility of physically-based theories that can robustly address phenomena of emergence without having recourse to the type of “vitalism” that was countenanced by some in the earlier part of the twentieth century.

5. Origin (Emergence) of Life

One of the biggest and most important of emergent phenomena is that of the origin or emergence of life. Franklin Harold ranks the mystery of life's origin as the most consequential facing science today (Harold 2001, 235). Michael Ruse claims that it is essential to incorporate origin of life resarch into Darwinism since it is a necessary condition for a scientifically and philosophically adequate definition of life (Ruse 2008, 101). Robert Rosen argued that the reason that the question “what is life?” is so hard to answer is that we really want to know much more than what it is, we want to know why it is, “we are really asking, in physical terms, why a specific material system is an organism and not something else” (Rosen 1991, 15). To answer this why question we need to understand how life might have arisen. While not attracting the attention nor levels of funding of molecular biology, there was a continuous research program during much of the twentieth century on the origin of life (for historical summaries see Fry 2000; Lahav 1999).

During the 1920s Alexander Oparin and J.B.S. Haldane independently proposed the first modern hypotheses as to how life might have originated on earth (Oparin 1929; Haldane 1929/1967). Key assumptions were that the geophysical conditions on the primitive earth were quite different from the present, most importantly there would have been no molecular oxygen in the atmosphere (oxygen arising very much later in time with the appearance of photosynthetic organisms that used light energy to split water) and that in this chemically reducing atmosphere an increasingly complex “soup” or organic molecules would arise from which the precursors of living systems could arise (for a recent discussion about the early atmosphere see Miyakawa et al. 2002). In effect this type of approach can be termed a metabolism-first view.

After the demonstration that some amino acids could be produced by the action of an electrical discharge through a mixture of gases thought to be present in the primitive atmosphere (Miller 1953), another possible starting point for the sequence to living things was considered, namely proteins, the polymers of amino acids formed under conditions of high temperature (Fox & Harada 1958). This protein-first view suggested that the chemistry that lead to life could have occurred in a sequestered environment (globs of proteins) that might also have some weak catalytic activity that would have facilitated the production of the other molecular components needed (Fox 1988).

With the understanding of the structure of DNA focus shifted to the abiotic routes to nucleic acids, which could serve then serve as templates for their own replication. Although Dawkins assumed a nucleic acid, formed by chance, would be the start of life since it would “self replicate” (Dawkins 1976), many approaches to getting to nucleic acids involve a role for minerals to help form scaffolds that serve as sorts of ordering templates and even as catalysts for nucleic acid formation (Cairns-Smith 1982; see summary in Lahav 1999). The discovery that RNA is capable of some catalytic activity has led to the postulate of not only a nucleic acids first but more generally of an ‘RNA world’ (Gilbert 1986). Variants of this approach represent the dominant mode of thinking about the early phases of the emergence of life (Maynard Smith and Szathmary 1995). Given that some type of metabolism would be needed to sustain RNA replication, a number of approaches blend replication-first with metabolism-first (Dyson 1982, 1999; de Duve 1995; Eigen 1992).

An alternative view, congenial to a thermodynamic and systems approach to the emergence of life, takes the above move a step further and emphasizes the need the presence of the main factors that distinguish cells from non-cells: metabolism via autocatalytic cycles of catalytic polymers, replication, and a physical enclosure within a chemical barrier like that provided by the cell membrane. This might be termed a proto-cell-first approach (Morowitz 1992; Weber 1998; Williams & Frausto da Silva 2002, 2003). Chemical constraints and the self-organizing tendencies of complex chemical systems in such a view would have been critical in determining the properties of the first living beings. (Kauffman 1993, 1995, 2000; Williams & Frausto da Silva 1999, 2002, 2003; Weber 2007, 2009). With the emergence of the first entities that could be termed living would come the emergence of biological selection or natural selection in which contingency plays a much greater part.

Darwin famously bracketed the question of the origin of life from questions of descent with modification through natural selection. Indeed, Darwinian theories of evolution can take living systems as a given and then explore how novelties arise through a combination of chance and necessity. However, an understanding of how life might have emerged would provide a bridge between our view of the properties of living systems and the evolutionary phenomena they exhibit. Such an understanding ultimately is needed to anchor living systems in matter and the laws of nature (Harold 2001, 235). This remains a challenge to be met in order for science to provide a more full answer to Shelley's question.

6. Artificial Life

Advances in computer technology in recent years have permitted exploration of life “in silico” as it were. While computer simulations are utilized by many theoretical biologists, those who explore ‘Artificial Life’ or ‘A-Life’ seek to do more than model known living systems. There goal is to place life as it is known on earth in a larger conceptual context of any possible forms of life (Langton 1989, 1995). Work in A-Life shifts our focus on the processes in living things rather than the material constituents of their structures per se (Emmeche 1994). In some ways this is a revival of the process thinking of the Cambridge biochemists of the 1930s, but involves a level of abstraction about the material structures that instantiate these processes that they would not have shared. However, such studies emphasize the organizational relationship between components rather than the components themselves, an important focus in the emerging age of “proteomics” in which, in the post human genome era, the complex, functional interactions of the large array of cellular proteins is being studied (Kumar & Snyder 2002).

A-Life studies can help us to sharpen our ideas about what distinguishes living from non-living and contribute to our definition of life. Such work can help delineate the degree of importance of the typical list of attributes of living entities, such as reproduction, metabolism, functional organization, growth, responsiveness to the environment, movement, and short- and long-term adaptations. A-Life work can also allow exploration about which features of life are due to the constraints of being enmattered in a particular manner and subject to physical and chemical laws, as well as exploring a variety of factors that might affect evolutionary scenarios (Etxeberria 2002). For example, the relative potential roles of selection and self-organization in the emergence of novel traits in evolutionary time might be evaluated by A-Life research. It is too soon yet to know how important the contribution of the A-Life program will be, but it is likely to become more prominent in the discourse on the origin and nature of life.

7. Conclusions

Our increased understanding of the physical-chemical basis of living systems has increased enormously over the past century and it is possible to give a plausible definition of life in these terms. “Living organisms are autopoietic systems: self-constructing, self-maintaining, energy-transducing autocatalytic entities” in which information needed to construct the next generation of organisms is stabilized in nucleic acids that replicate within the context of whole cells and work with other developmental resources during the life-cycles of organisms, but they are also “systems capable of evolving by variation and natural selection: self-reproducing entities, whose forms and functions are adapted to their environment and reflect the composition and history of an ecosystem” (Harold 2001, 232). Such a perspective represents a fulfillment of the basic dual insights of Schrödinger near mid-century. Much remains to be elucidated about the relationships among the complex molecular systems of living entities, how they are constrained by the system as a whole as well as by physical laws. Indeed, it is still an open question for some as to whether we have yet a sufficiently rich understanding of the laws of nature or whether we need to seek deep laws that lead to order and organization (Kauffman 2000). At the start of the new century there is a sense of the importance of putting Schrödinger's program into a ‘systems’ context ( see for example Rosen 1991, 2000; Kauffman 1993, 1995, 2000; Depew and Weber 1995; Weber & Depew 1996, 2001; Ulanowicz 1997, 2001; Williams and Frausto da Silva 1999; 2002, 2003; Harold 2001; Morowitz 2002; Bunge 2003; Macdonald and Macdonald 2010). Significant challenges remain, such as fully integrating our new view of organisms and their action with evolutionary theory, and to understand plausible routes for the emergence of life. The fulfillment of such a program will give us a good sense of what life is on earth. Work in A-Life and empirical work seeking evidence of extra-terrestrial life may help the formulation of a more universal concept of life.

Bibliography

  • Abir-Am, P., 1987. “The biotheoretical gathering, trans-disciplinary authority and the incipient legitimation of molecular biology in the 1930s: New perspective on the historical sociology of science,” History of Science, 25: 1–70.
  • Benner, S.A., 2010. “Defining life,” Astrobiology, 10: 1021–1030.
  • Bernal, J.D., 1951. The Physical Basis of Life, London: Routledge and Kegan Paul.
  • Brooks, D.R. and Wiley, E.O., 1986. Evolution as Entropy: Toward a Unified Theory of Biology, Chicago: University of Chicago Press.
  • Bunge, M., 2003. Emergence and Convergence: Qualitative Novelty and the Unity of Knowledge, Toronto: University of Toronto Press.
  • Cairns-Smith, A.G., 1982. Genetic Takeover and the Mineral Origins of Life, Cambridge: Cambridge University Press.
  • Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E., 2001. Self-Organization in biological Systems, Princeton: Princeton University Press.
  • Carroll, S.B., Grenier, J.K., and Weatherbee, S.D., 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, Malden MA: Blackwell Scientific.
  • Dawkins, R., 1976, 1989. The Selfish Gene, Oxford: Oxford University Press
  • Deacon, T.W., 2003. “The hierarchic logic of emergence: Untangling the interdependence of evolution and self-organization,” in B.H. Weber and D.J. Depew, Evolution and Learning: The Baldwin Effect Reconsidered, Cambridge MA: MIT Press, pp.273–308.
  • De Chadarevian, S., 2002. Designs for Life: Molecular Biology after World War II, Cambridge: Cambridge University Press.
  • De Duve, C., 1995. Vital Dust: The Origin and Evolution of Life on Earth, New York: Basic.
  • Depew, D.J. and Weber, B.H., 1995. Darwinism Evolving: System Dynamics and the Genealogy of Natural Selection, Cambridge MA: MIT Press.
  • Dyson, F., 1982. “A model for the origin of life,” Journal of Molecular Evolution, 18: 344–350.
  • Dyson, F., 1999. Origins of Life, Cambridge: Cambridge University Press.
  • Eigen, M., 1992. Steps Towards Life: A Perspective on Evolution, Oxford: Oxford University Press.
  • Emmeche, C., 1994. The Garden in the Machine: The Emerging Science of Artificial Life, Princeton: Princeton University Press.
  • Etxeberria, A., 2002. “Artificial evolution and life-like creativity,” Leonardo, 35: 275–281.
  • Fox, S.N. and Harada, K., 1958. “Thermal copolymerization of amino acids to a product resembling protein,” Science, 170: 984–986.
  • Fox, S.N., 1988. The Emergence of Life: Darwinian Evolution from the Inside, New York: Basic.
  • Fruton, J.S., 1972. Molecules and Life, New York: Wiley.
  • Fruton, J.S., 1999. Proteins, Enzymes, and Genes: The Interplay of Chemistry and Biology, New Haven: Yale University Press.
  • Fry, I., 2000. The Emergence of Life on Earth: A Historical and Scientific Overview, New Brunswick NJ: Rutgers University Press.
  • Gayon, J., 2010. “Defining life: synthesis and conclusions,”. Origins of Life and Evolution of Biospheres, 40: 231–244.
  • Gilbert, W., 1986. “The RNA world,” Nature, 319: 618.
  • Graur, D. and Li, W.-H., 2000. Fundamentals of Molecular Evolution, second edition, Sunderland, MA: Sinauer.
  • Haldane, J.B.S., 1929/1967. “The origin of life,” Rationalist Animal, reprinted as an appendix in J.D. Bernal 1967, The Origin of Life, Cleveland: World.
  • Haldane, J.B.S., 1947. What is Life?, New York: Boni and Gaer.
  • Haldane, J.S., 1929. The Sciences and Philosophy, Garden City: Doubleday, Doran.
  • Haldane, J.S., 1931. The Philosophical Basis of Life, Garden City: Doubleday, Doran.
  • Harold, F.M., 2001. The Way of the Cell: Molecules, Organisms and the Order of Life, New York: Oxford University Press.
  • Hogben, L., 1930. The Nature of Living Matter, London: Kegan Paul, Trench, Trubner
  • Hopkins, F.G., 1913 [1949]. “The dynamic side of biochemistry,” Report of the British Association, 1913: 652–658; reprinted in Nature, 92: 213–223, and in Needham and Baldwin 1949, pp. 136–159.
  • Hopkins, F.G., 1927 [1949]. “A lecture on organicism,” reprinted in Needham and Baldwin 1949, pp. 179–190.
  • Jantsch, E., 1980. The Self-Organizing Universe: Scientific and Human Implications of the Emerging Paradigm of Evolution, New York: Pergamon.
  • Judson, H.F., 1979. The Eighth Day of Creation: Makers of the Revolution in Biology, New York: Simon & Schuster.
  • Kauffman, S.A., 1993. The Origins of Order: Self-Organization and Selection in Evolution, New York: Oxford University Press.
  • Kauffman, S.A., 1995. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity, New York: Oxford University Press.
  • Kauffman, S.A., 2000. Investigations, New York: Oxford University Press.
  • Kay, L.E., 2000. Who Wrote the Book of Life: A History of the Genetic Code, Stanford: Stanford University Press.
  • Keller, E.F., 1995. Refiguring Life, New York: Columbia University Press.
  • Keller, E.F., 2002. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines, Cambridge MA: Harvard University Press.
  • Kamminga, H., 1997. “Federick Gowland Hopkins and the unification of biochemistry,” Trends in Biochemical Sciences, 22: 184–187.
  • Kamminga, H. and Weatherall, 1996. “The making of a biochemist I: Frederick Gowland Hopkins’ Construction of Dynamic Biochemistry,” Medical History, 40: 269–292.
  • Kumar, A. and Snyder, M., 2002. “Protein complexes take the bait,” Nature, 415: 123–124.
  • Langton, C.G., 1989. Artificial Life, Redwood City, CA: Addison-Wesley.
  • Langton, C.G., 1995. Artificial Life: An Overview, Cambridge, MA: MIT Press.
  • Lennox, J.G., 2001. Aristotle's Philosophy of Biology: Studies in the Origins of Life Science, Cambridge: Cambridge University Press.
  • Macdonald, C. and Macdonald, G. (eds.), 2010. Emergence in Mind, Oxford: Oxford University Press.
  • Margulis, L. and Saga, D., 1995. What is Life?, New York: Simon & Schuster.
  • Maynard Smith, J. and Szathmary, E., 1999. The Origins of Life: >From the Birth of Life to the Origin of Language, Oxford: Oxford University Press.
  • Midgley, M., 2001. Science and Poetry, London: Routledge.
  • Miller, S.L., 1953. “A production of amino acids under possible primitive earth conditions,” Science, 117: 528–529.
  • Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaver, H.J., and Miller, S.L., 2002. “Prebiotic synthesis from CO atmospheres: Implications for the origins of life,” Proceedings of the National Academy of Science (USA), 99: 14628–14631.
  • Morange, M., 2008. Life Explained, New Haven: Yale University Press.
  • Morowitz, H.J., 1968. Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics, New York: Academic Press.
  • Morowitz, H.J., 2002. The Emergence of Everything: How the World Became Complex, New York: Oxford University Press.
  • Moss, L., 2003. What Genes Can't Do, Cambridge MA: MIT Press.
  • Murphy, M.P.and O'Neill, L.A.J., 1995. What is Life? The Next Fifty Years: Speculations on the Future of Biology, Cambridge: Cambridge University Press.
  • Needham, J., 1925. “The philosophical basis of biochemistry,” Monist, 35: 27–48.
  • Needham, J. and Baldwin, E., 1949. Hopkins & Biochemistry, Cambridge: Heffer.
  • Oparin, A.I., 1929. The Origin of Life, S. Morgulis (trans.), New York: Macmillan, 1936.
  • Oyama, S. Griffiths, P.E., and Gray, R.D., 2001. Cycles of Contingency: Developmental Systems and Evolution, Cambridge MA: MIT Press.
  • Peacocke, A.R., 1983. “An Introduction to the Physical Chemistry of Biological Organization,” Oxford: Oxford University Press.
  • Pirie, N.W., 1937. “The meaninglessness of the terms life and living,” in J. Needham and D.E. Green (eds.), Perspectives in Biochemistry, Cambridge: Cambridge University Press, pp. 11–22.
  • Prebble, J. and Weber, B., 2003. Wandering in the Gardens of the Mind: Peter Mitchell and the Making of Glynn, New York: Oxford University Press.
  • Prigogine, I., 1947. Etude thermodynamique des Phenomenes Irreversibles, Paris: Dunod.
  • Prigogine, I. And Stengers, I., 1984. Order Out of Chaos: Man's New Dialogue with Nature, New York: Bantam.
  • Rosen, R., 1991. Life Itself: A Comprehensive inquiry into the Nature, Origin, and Fabrication of Life, New York: Columbia University Press.
  • Rosen, R., 2000. Essays on Life Itself, New York: Columbia University Press.
  • Ruse, M., 2008. Charles Darwin, Malden, MA: Blackwell Publishing.
  • Schneider, E.D., 1993. “Towards a thermodynamics of life,” in L. Marulis and S. Schneider (eds.), Gaia 2000, Cambridge MA: MIT Press.
  • Schneider, E.D. and Kay, J.J., 1995. “Order from disorder: the thermodynamics of complexity in biology,” in M.P. Murphy and L.A.J. O'Neill What is Life? The Next Fifty Years, Cambridge: Cambridge University Press, pp. 161–173.
  • Schrödinger, E., 1944. What is Life? The Physical Aspect of the Living Cell, Cambridge: Cambridge University Press.
  • Swenson. R., 2000. “Spontaneous order, autokatakinetic closure, and the development of space-time,” Annals of the New York Academy of Sciences, 901: 311–319.
  • Scott, T.A., 1996. Concise Encyclopedia of Biology, second edition, New York: Walter de Gruyter.
  • Sheets-Johnstone, M.1999. The Primacy of Movement, Philadelphia: Benjamins.
  • Smith, C.U.M., 1976. The Problem of Life: An Essay in the Origins of Biological Thought, New York: Wiley.
  • Sole, R. and Goodwin, B., 2000. Signs of Life: How Complexity Pervades Biology, New York: Basic.
  • Stenesh, J., 1989. Dictionary of Biochemistry and Molecular Biology, second edition, New York: Wiley.
  • Sterelny, K. and Griffiths, P.E., 1999. Sex and Death: An Introduction to Philosophy of Biology, Chicaago: University of Chicago Press.
  • Tyson, J.L., 1976. The Belousov-Zhabotinski Reaction, Berlin: Springer-Verlag.
  • Ulanowicz, R.E., 1997. Ecology, The Ascendent Perspective, New York: Columbia University Press.
  • Weatherall, M. and Kamminga, H., 1992. Dynamic Science: Biochemistry in Cambridge 1898–1949, Cambridge: Wellcome Unit for the History of Medicine.
  • Weaver, W., 1948. “Science and complexity,” American Scientist, 36: 536–544.
  • Weber, B.H., 1998. “Emergence of life and biological selection from the perspective of complex systems dynamics,” in G. van de Vijver, S.N. Salthe, and M. Delpos (eds.), Evolutionary Systems: Biological and Epistemological Perspectives on Selection and Self-Organization, Dordrecht: Kluwer.
  • Weber, B.H., 2007. “Emergence of life,” Zygon, 42: 837–856.
  • Weber, B.H., 2009. “On the emergence of living systems,” Biosemiotics, 2: 343–359.
  • Weber, B.H., 2010. “What is life? Defining life in the context of emergent complexity,” Origins of Life and Evolution of Biospheres, 40: 221–229.
  • Weber, B.H. and Depew, D.J., 1996. “Natural selection and self-organization: dynamical models as clues to a new evolutionary synthesis,” Biology and Philosophy, 11: 33–65.
  • Weber, B.H. and Depew, D.J., 2001. “Developmental systems, Darwinian evolution, and the unity of science,” in S. Oyama, P.E. Griffiths, and R.D. Gray Cycles of Contingency: Developmental Systems and Evolution, Cambridge, MA: MIT Press, pp. 239–253.
  • Wicken, J.S., 1987. Evolution, Information, and Thermodynamics, New York: Oxford University Press.
  • Williams, R.J.P. and Frausto da Silva, J.J.R., 1999. Bringing Chemistry to Life: From Matter to Man, Oxford: Oxford University Press.
  • Williams, R.J.P. and Frasto da Silva, J.J.R., 2002. “The systems approach to evolution,” Biochemical and Biophysical Research Communications, 297: 689–699.
  • Williams, R.J.P. and Frasto da Silva, J.J.R., 2003. “Evolution was chemically constrained,” Journal of Theoretical Biology, 220: 323–343.
  • Woodger, J. H., 1929. Biological Principles: A Critical Study, London: Routledge & Keegan Paul.

Academic Tools

  How to cite this entry.
  Preview the PDF version of this entry at the Friends of the SEP Society.
  Look up this entry topic at the Internet Philosophy Ontology Project (InPhO).
  Enhanced bibliography for this entry at PhilPapers, with links to its database.

Other Internet Resources

  • For complex systems see
  • For emergence, see Exploring Emergence (by Mitchel Resnick and Brian Silverman, MIT Media Laboratory)
  • For resources on evolution, see Dialogue on Science, Ethics, and Religion: Evolution (Maintained by the American Association for the Advancement of Science)
  • For Erwin Schrödinger, see What is Life (whatislife.com, an educational service intended for the advancement of scientific literacy and communication between the scientific community and general public.)

Related Entries

artificial intelligence consciousness Darwinism emergent properties laws of nature mereology molecular biology natural selection physics: holism and nonseparability Popper, Karl statistical physics: philosophy of statistical mechanics teleology: teleological notions in biology Whitehead, Alfred North

Copyright © 2011 by
Bruce Weber

'생명공학' 카테고리의 다른 글

lower respiratory tract  (0) 2021.09.02
upper respiratory tract  (0) 2021.09.02
Molecular Biology  (0) 2021.03.31
분자생물학  (0) 2021.03.07
Biotechnology  (0) 2021.02.23